Week 10: Final Review!
MATH 4A
TA: Jerry Luo
jerryluo8@math.ucsb.edu
Website: math.ucsb.edu/~jerryluo8
Office Hours: Monday 9:30-10:30AM, South Hall 6431X
Math Lab hours: Monday 3-5PM, South Hall 1607
Disclaimer: Since I am not the one writing the exam, I cannot guarantee this practice "exam" will look anything like the final. However, I reckon if you can do these without trouble, you're probably quite fine for the final.

4-1.5 Let $v=\left[\begin{array}{c}-4 \\ -6 \\ -8\end{array}\right], u=\left[\begin{array}{c}-3 \\ -3 \\ 8+k\end{array}\right]$, and $w=\left[\begin{array}{c}-4 \\ -1 \\ 2\end{array}\right]$. The set $\{v, u, w\}$ is linearly independent unless $k=$?

4-2.5 Let $v_{1}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Suppose $T\left(v_{1}\right)=\left[\begin{array}{c}-12 \\ 8\end{array}\right]$ and $T\left(v_{2}\right)=\left[\begin{array}{c}19 \\ -9\end{array}\right]$. For an arbitrary vector $v=\left[\begin{array}{l}x \\ y\end{array}\right]$, find $T(v)$.

5-2.12 Let $A=\left[\begin{array}{ccc}-1 & -3 & -2 \\ 1 & 3 & 2 \\ -2 & -6 & -4\end{array}\right]$. Find a basis for the null space (kernel) of A.

6-1.4 Find the determinant: $C=\left[\begin{array}{cccc}-1 & 2 & -2 & 0 \\ 0 & 0 & 3 & -1 \\ 3 & 0 & -1 & 0 \\ -2 & 1 & 0 & -2\end{array}\right]$

7-1.10 Consider the ordered bases $B=(x,-(1+5 x))$ and $C=(2,2 x-4)$ for polynomials of degree less than 2. Let $E=(1, x)$ be the standard basis. Hint: Don't reinvent the wheel!
(a) Find T_{C}^{E}, the transition matrix from C to E.
(b) Find T_{B}^{E}.
(c) Find T_{E}^{B}.
(d) Find T_{B}^{C}.

8-1.8 Consider $A=\left[\begin{array}{ccc}7 & 5 & -6 \\ -6 & -4 & 6 \\ 5 & 5 & -4\end{array}\right]$. Find the eigenvalues of A and its corresponding eigenvectors.

9-1.1 Let $A=\left[\begin{array}{ccc}6 & -3 & -13 \\ 1 & 2 & 5 \\ 3 & -3 & -10\end{array}\right]$. Suppose $\left[\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ are eigenvectors. Then what are the eigenvalues?

9-1.4 Let $A=\left[\begin{array}{ll}5 & 2 \\ 0 & 3\end{array}\right]$. Diagonalize A. Compute A^{500}.

9-1.11 Let $A=\left[\begin{array}{ccc}-4 & 0 & 0 \\ -1 & -5 & 1 \\ -3 & -1 & -3\end{array}\right]$. Find the real eigenvalue of A, it's multiplicity, and the dimension of its eigenspace.

